Автор
Роман Щербаков

Роман Николаевич Щербаков

  • 9 книг
  • 1 читатель
3.5
1оценка
Рейтинг автора складывается из оценок его книг. На графике показано соотношение положительных, нейтральных и негативных оценок.
3.5
1оценка
5 0
4 1
3 0
2 0
1 0
без
оценки
0

Роман Щербаков — книжные серии

  • Великие физики как педагоги: от научных исследований - к просвещению общества Роман Щербаков
    ISBN: 978-5-94774-775-1
    Год издания: 2009
    Издательство: Бином. Лаборатория знаний
    Язык: Русский
    Опыт преподавательской и просветительской деятельности классиков науки представлен как система их глубоких представлений и оригинальных взглядов на преподавание физики.
    Для студентов и преподавателей педагогических вузов, учителей, а также всех интересующихся историей науки.
  • Дифференциалы помогают геометрии Роман Щербаков
    Год издания: 1982
    Издательство: Просвещение
    Язык: Русский
    Книга посвящена истории возникновения и развития дифференциальной геометрии. Авторы в популярной форме излагают основные результаты классической дифференциальной геометрии, широко используя векторное исчисление и метод подвижного репера.
  • От проективной геометрии - к неевклидовой (вокруг абсолюта) Роман Щербаков
    Год издания: 1979
    Издательство: Просвещение
    Язык: Русский
    Книга посвящена неевклидовой геометрии. Изложение основано на идеях проективной геометрии и понятии абсолюта. Авторы в популярной и занимательной форме излагают основы проективной геометрии, описывают различные неевклидовы геометрии на плоскости и показывают возможность их применения в физике. Значительное место уделено жизни и творчеству художников и учеученых от эпохи Возрождения до наших дней, мировоззренческим вопросам и вопросам воспитания творческой личности. Книга может быть использована во внеклассной работе в школе и для самостоятельного чтения учащимися и студентами.
  • От проективной геометрии - к неевклидовой. Вокруг абсолюта Роман Щербаков
    ISBN: 978-5-397-01288-1
    Год издания: 2010
    Издательство: Либроком
    Язык: Русский
    Предлагаемая вниманию читателей книга посвящена неевклидовой геометрии; изложение в ней основано на идеях проективной геометрии и понятии абсолюта. В популярной и занимательной форме авторы излагают основы проективной геометрии, описывают различные неевклидовы геометрии на плоскости и показывают возможность их применения в физике. Значительное место в книге уделено жизни и творчеству знаменитых художников и ученых от эпохи Возрождения до наших дней (идеи, о которых идет речь в книге, связаны с именами Леонардо да Винчи, Паскаля, Штейнера, Мебиуса, Гильберта и др.), а также мировоззренческим вопросам и вопросам воспитания творческой личности. Книга адресована прежде всего старшеклассникам, интересующимся математикой, но будет также полезна преподавателям и студентам. Может быть использована во внеклассной работе в школе и для самостоятельного чтения.
  • Дифференциалы помогают геометрии Роман Щербаков
    ISBN: 978-5-397-01287-4
    Год издания: 2010
    Издательство: Либроком
    Язык: Русский
    Настоящая книга посвящена истории возникновения и развития дифференциальной геометрии. Авторы в популярной форме излагают основные результаты классической дифференциальной геометрии, широко используя векторное исчисление и метод подвижного репера - методы, сыгравшие большую роль в дальнейшем развитии классической дифференциальной геометрии и расширении содержания этой науки. Первые десять глав книги посвящены изучению инвариантов, а также конкретных линий и поверхностей. В главе XI рассмотрена так называемая внутренняя геометрия поверхности, послужившая основой для создания римановой геометрии и ее обобщений; в главе XII рассказывается о том, как дифференциальная геометрия применяется в практических дисциплинах - картографии и геодезии. Книга написана доступным и одновременно математически строгим языком; изложение в ней становится постепенно все более трудным, требуя сознательного применения того, что было описано ранее. Книга рассчитана прежде всего на учащихся старших классов, причем обращена она не столько к уже увлеченным математикой читателям, сколько к тем, кто только открывает для себя прелесть этой науки. Может служить основой для работы школьного математического кружка или факультатива.